
Optimal Management of Diabetic Foot Ulcers

Valerie Palmer, RN, ACHRN, CWCN, CWS, CMBS, FACCWS

NO FINANCIAL CONFLICT OF INTEREST TO DISCLOSE

2021 CDC NATIONAL DIABETES STATISTICS REPORT

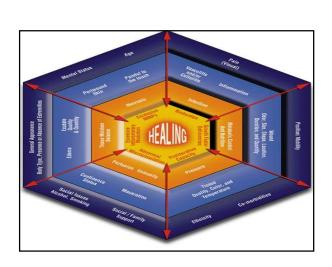
- 38.1 Million adults 18 years or older in U.S. have diabetes
- 14.7% of adults 18 years or older in U.S. population have diabetes
- 8th Leading cause of death in U.S.

2021 CDC NATIONAL DIABETES STATISTICS REPORT

- 60%-70% diabetics have nervous system damage
- Severe nervous system damage increases chance of ulceration
- > 60% non-traumatic lower limb amputations occur in people with diabetes

INTERNATIONAL DIABETES FEDERATION GLOBAL POSITION STATEMENT

- Global prevalence 537 million adults in 2021
- Predicted to reach 783 million by 2045
- \$966 billion USD spent yearly globally to treat diabetes
- 1 in every 6 people with diabetes will develop foot ulcer
- 85% diabetes related amputations are preceded by foot
- 49% 85% of amputations are preventable
- Requires well-organized diabetic multidisciplinary team


So, just how do you evaluate and treat a diabetic ulcer of the lower extremity? Just like you do any other lower extremity ulcer!

Diabetes Tobacco use Malnutrition Hereditary disorder Alcohol use Malignancy Renal failure Autoimmune Chemotherapy Steroids Extremes of age Systemic infection

Ischemia Edema Infection Scarring Radiation injury Topical steroids Local toxins Trauma/Pressure Foreign bodies Local malignancy

Why Diabetics Don't Heal High levels of matrixmetalloproteinases (MMP-9) Low levels of growth factors (Cullen et. al: Wound Rep Reg 10: 2002) If hypoxic: Poor collagen production Impaired resistance & response to local infection Limited angiogenesis Decreased fibroblast replication

CHRONIC WOUNDS HAVE: Inhibitors or blockers of growth factor action Inadequate quantities of growth factors Primary inadequate response to available growth factors Have 30 X more MMP activity than acute wounds

DIAGNOSIS OF DELAYED WOUND HEALING

Evaluation of:

- 1. Vascular status
- 2. <u>Infection</u> (local or systemic)
- 3. <u>I</u>mmune system
- 4. Nutritional status
- 5. Mechanical factors
- 6. Malignancy (exclude)

VASCULAR EVALUATION History

- Diabetes
- DVT
- Tobacco use
- Radiation
- Local toxins (Spider bite)
- Collagen vascular disease
- Scarring
- Claudication
- Rest Pain

VASCULAR EVALUATION Examination

- Pulses (palpable/audible)
- Skin color (dependent rubor/hyperpigmentation)
- Rate of capillary refill (< 3 sec)
- Edema (even trace amounts)
- Hair (minor finding)

VASCULAR EVALUATION

Diagnostic Testing

- CBC (anemia)
- TCOM
- Arterial doppler
- Venous doppler
- Tissue biopsy
- Collagen vascular
- Arteriogram
- MRA
- MRV
- CTA • CTV

EVALUATION OF MECHANICAL FACTORS

- Pressure
- Foreign body
- Edema

NUTRITIONAL EVALUATION

- Physical examination
- Total protein
- Albumin
- PreAlbumin
- CBC (anemia)
- Glucose (blood sugar, HgbA1C 6.5% or <)

EVALUATION OF MECHANICAL FACTORS

Pressure Due To Immobilization

- CVA
- Paralysis (spinal)
- Closed head injury
- Trauma with loss of consciousness
- Surgery
- Traction

EVALUATION OF MECHANICAL FACTORS Pressure Due To Orthotics

- Shoes
- Stockings
- Braces
- Prosthesis

EVALUATION OF MECHANICAL FACTORS Pressure Due To Dressings

- Cast
- Splint
- Circumferential dressings
- Dressing packing

EVALUATION OF MECHANICAL FACTORS Foreign Body

Intentional

- ORIF
- Joint implant
- IV Access
- Mesh
- Synthetic grafts

Incidental

- Retained suture
- Bone (sequestrum)
- Needle
- Retained dressing Material
- Retained fingernail or toenail fragment

EVALUATION OF MECHANICAL FACTORS <u>Edema</u>

- Trauma
- CHF
- Renal failure
- Lymphedema (congenital acquired)
- Tumor
- Surgery

MMUNE SYSTEM EVALUATION Collagen vascular disease Drugs Steroids

- Chemotherapy
- HIV
- Systemic malignancy

EVALUATION FOR MALIGNANCY

- "Think of It"
 - Primary malignancy
 - Secondary malignancy
- Biopsy
- Incisional
- Excisional
- Location
 - Especially lower leg or arm
 - History of "almost healing"

EVALUATION FOR INFECTION

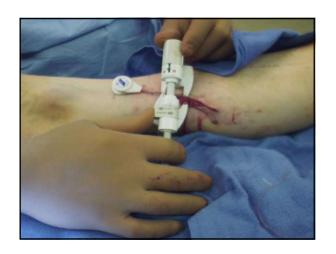
- Soft Tissue "bioburden"
 - Swab culture
 - Wound biopsy (gold standard)
 - (> 100,000 Organisms per gram of tissue)
- Bone infection
 - Clinical inspection
 - Bone biopsy
 - Plain X-Ray
 - CT scan
 - MRI scan
 - Labeled WBC scan

TREATMENT OF DELAYED WOUND HEALING

- Surgery
 - Debridement
 - Revascularization
 - Skin graft
 - Flar
 - Amputation
- Edema reduction
- Hyperbaric oxygen therapy
- Pressure relief
- Nutritional supplements
- Removal of foreign bodies
- Resolution of infection
- Excise malignancy
- Medical adjunctive care
- Local care of wound
 - Topical care
 - Dressing care

(SURGERY) SKIN GRAFTS AND FLAPS

- Split thickness skin graft
- Requires a uniform, granulating, infection Free hed
- Skin and Skin/Muscle flaps
 - To cover non-vascularized wounds (bare bone)
- To cover pressure areas (sacral, ischial, trochanteric pressure ulcers)
- To cover exposed, non-infected, foreign body (prosthesis)


(SURGERY) SKIN GRAFTS AND FLAPS

- Skin stretching device
- Epidermal autograft (CelluTome®)
 - Donor site less painful than STSC
 - Donor site heals in 3-4 days and care be reharvested
 - Good for patients with large wounds
 - Requires no anesthesia
 - Epidermal grafts take on characteristics of recipient site
 - Can be used on patients with scleroderma or pyoderma gangrenosum

CIRCULATION Arterial and venous MECHANICAL Distracts wound edges NUTRITION Protein loss in excessive swelling/drainage

EDEMA REDUCTION

- Compression
- Multi-layer compression wraps
- Unna's boot
- Compression stockings
- Sequential pressure devices
- Ace wrap/short stretch ace
- Elevation (as tolerated)
- Negative pressure wound therapy
- Diuretics

COMPRESSION

- Must be appropriate to arterial circulatory status
- ABI of <0.7 or TCOM of lower extremity
 40 mmHg calls for modification of compression strength

COMPRESSION

All patients/caregivers must be instructed on the signs/symptoms of vascular (arterial) compression/compromise and its immediate treatment

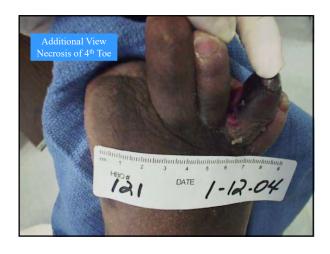
Hyperbaric oxygen is not a primary treatment for chronic diabetic ulcers of the lower extremity:

IT IS ADJUNCTIVE THERAPY

CMS CRITERIA

- Diabetic Ulcer
 - Type I or II diabetes
 - Lower extremity ulcer as a result of diabetes
 - Wagner grade 3 or greater
 - 30 days of failed standard wound care

EVALUATION AND TREATMENT MUST ALSO INCLUDE:


- 1. Appropriate debridement
- 2. Offloading/pressure relief
- 3. Optimizing nutritional status
- 4. Optimizing vascular status
- 5. Appropriate antibiotics
- 6. Wound dressings to maintain a moist granulating bed

Patient #121

- 45 year old black male
- Adult onset diabetes mellitus
- History of left BKA
- 10/4/99 Right femoral-distal peroneal bypass with insitu saphenous vein
- 9/23/03 presented to wound center with two diabetic, neuropathic Wagner III ulcers to right foot
- No osteomyelitis
- Previous bypass left no revascularization options
- Began HBO for a total of 40 treatments

PRESSURE RELIEF

- Beds
- Water beds
- Egg crate topper
- Reactive surface beds (low air loss)
- Clinitron
- Cushions (Foam, Felt)
- Crutches
- Rolling walker
- Turning/Repositioning

- Orthotics
- Shoes
- Total contact cast (Gold standard)
- Active offloading walker
- Specialty splints

NUTRITION

Probably the most neglected parameter in wound healing, especially in nursing home patients.

NUTRITION TREATMENT

- Maximize glucose control in diabetics:
 - Medication
 - Diet
- Vitamins/Minerals
- Anabolic steroids
- Maximize protein in diet (especially L-Arginine)

L-ARGININE

- Main substrate nitric oxide pathway
- Precursor to endothelial-derived nitric oxide
- Nitric Oxide:
 - Vasodilator (helps pain from PVD)
 - Non-specific immunity
 - Supports collagen production
 - Enhance wound tensile strength

ARGINADE – 4.5 g L-ARGININE

JUVEN – 7.0 g L-ARGININE

1.5 g HMB

(B-HYDROXY – B METHYLBUTYRATE)

7.0 g GLUTAMINE

REMOVAL OF FOREIGN BODY ASSOCIATED WITH WOUNDS

Unintentional Foreign Bodies

- Sewing needles
- Pebbles
- Bullets
- Thorns
- Retained dressings (packing, foam sponges)
- Gouty tophi

REMOVAL OF FOREIGN BODY ASSOCIATED WITH WOUNDS Intentional Foreign Bodies

- ORIF orthopedic devices (exposed)
- Prosthetic devices
- Retained, non-absorbable suture (infected)

TREATMENT OF INFECTION

- Debride non-viable tissue
 - Soft tissue/Bone
 - Evoluiono1
 - Engranati
 - Curattag
 - Amputation
- Antibiotics (culture guided)
 (6 weeks for osteomyelitis)
- Topical antibiotics

TREATMENT OF MALIGNANCY

- Surgical excision (with skin margins clear)
- Moh's chemosurgery
- Radiation therapy
- Topical chemotherapy (5-FU)

MEDICAL ADJUNCTIVE CARE

- Anticoagulation
- RBC wall deformation
- Control gout (foreign body)
- Maximize control Of CHF & HTN
 - Circulation
- Maximize control of diabetes
- Maximize control of autoimmune and/or collagen vascular diseases

GUIDING PRINCIPLES FOR LOCAL WOUND CARE

- Many wounds will improve if <u>anything</u> is done regularly
- Choice of topicals (and treatment)
 must be driven by <u>diagnosis</u> and not
 by what product is on the shelf

GUIDING PRINCIPLES, CONTINUED

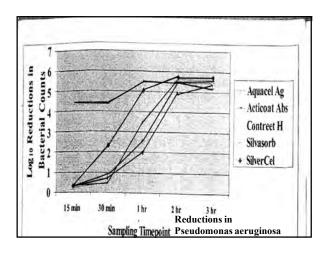
- Topical agents will **NOT** defeat:
 - 1. Failure to relieve pressure
 - 2. Inadequate Circulation
 - 3. Malnutrition
 - 4. Unrelieved edema
- Cost **IS** a factor

LOCAL WOUND CARE

- Topical Antibiotics/Antibacterials
- Debriding agents
- Stimulating agents
- Enzyme (MMP) inactivators (Protease modulating dressings)

(LOCAL CARE) <u>TOPICAL</u> ANTIBIOTICS/ANTIMICROBIALS

- Antibiotic ointments/Gels (Mupirocin, Bacitracin, Neomycin)
- Sodium hypochlorite (Anasept, Vashe)
- Silver compounds
- Iodine compounds

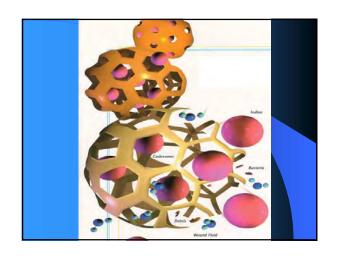

SILVER

- EXISTS IN TWO FORMS:
 - 1. Elemental or metallic Ag(0)
 - 2. Ionic silver/Silver cation Ag(I) or Ag+

SILVER

- The biologically active form of silver is the ionic (silver cation)
- <u>ALL</u> silver products have to produce the <u>same</u> biologically active ingredient to be effective: Ag+

If there is any difference in the various silver products it has to be in the dressing, **not** the active agent



TOPICAL IODINE IS AVAILABLE IN TWO FORMS:

- Povidone iodine (10%)
- Cadexomer iodine

CADEXOMER IODINE

• 3 dimensional starch lattice formed into spherical microbeads (0.9% Iodine in starch lattice)

THE LATTICE:

- Has a high absorption capacity
- Absorption increases the size of the lattice, releasing the iodine at 1 part per million, until the reservoir is exhausted

(LOCAL CARE) DEBRIDING AGENTS

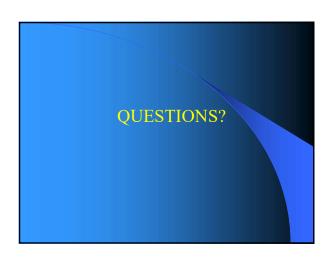
- Collagenase/Santyl
- Maggots
- Medical grade honey?
- Sharp debridement (remains the quickest & most effective means)

- Growth factors
 - Platelet derived (Regranex, black box warning
- Cultured human neonatal skin (Apligraf & Dermagraft)
- Allograft (Theraskin, Graft Jacket, Epifix)
- Porcine xenograft (Oasis Matrix)
- Bovine xenograft (Primatrix)

(LOCAL CARE) ENZYME INACTIVATORS (PROTEASE MODULATING DRESSING)

MMPs:

- Play a key role in wound healing
- Protein degrading enzymes that require calcium for conformation and zinc to be
- Degrade growth factors, matrix protein, & protease inhibitors
- 24 Identified


INDICATIONS FOR PROTEASE MODULATING DRESSING

- To protect endogenous GF
- To prepare wound bed for application of exogenous GF
- To protect previously applied GF (Apligraf, Dermagraft, Regranex)

PROMOGRAN

- Protease Modulating Matrix
- Bovine Collagen
- Oxidized Regenerated Cellulose
- Can bind growth factors but they remain biologically active as the Promogran is resorbed

References:

- Wound, Ostomy, and Continence Nurses Society. (2021). Guideline for Management of Wound in Patients with Lower-Extremity Wounds Due to Diabetes Mellitus and/or Neuropathic Disease. Mount Laurel, NJ: WOCN
- Wound Healing Society Education Committee (2011).
 Evidenced-Based Approach to Lower-Extremity Ulcers:
 Basics of Wound Care 2011. Wound Healing Society.
- Shankaran, M. et al. Advanced Therapies for Chronic Wounds: NPWT, Engineered Skin, Growth Factors, Extracellular Martices. Dermatology Therapy, 2013; 26:215-221
- Ravanti, L. and Kähäri, V. (2000). Matrix Metalloproteinases in Wound Repair (Review). International Journal of Molecular Medicine. 2000;6:391-407.

References:

- Richmond, A. et al. (2013). Evidence-Based Management of Common Chronic Lower Extremity Ulcers. Dermatologic Therapy, Vol. 26, 2013, 187-196.
- Steed, D.L., et al. (2006). Guidelines for the Treatment of Diabetic Ulcers. Wound Repair & Regeneration, 2006;14:680-692.
- Alavi, A. et al. Diabetic Foot Ulcers: Part II. Management. Journal Am Acad Dermatology, 2014; 70(1):21.e1-21.e24.
- Kim, P.J. et al. (2012). Wound Care: Biofilm and Its Impact on the Latest Treatment Modalities for Ulcerations of the Diabetic Foot. Seminars in Vascular Surgery, 2012;25:70-74.
- Centers for Disease Control and Prevention. (2020). National Diabetes Statistics Report: Estimates of Diabetes and its Burden in the United States, 2020. Atlanta, GA: U.S. Department of Health and Human Services; 2020.

References:

- Boykin, J.V., Jr and Baylis, C. (2006). Homocysteine-A Stealth Mediator of Impaired Wound Healing: A Preliminary Study. Wounds. 2006;18(4): 101-116.
- 11. Hayden, M.R. and Tyagi, S. (2004). Homocysteine and Reactive Oxygen Species in Metabolic Syndrome Type 2 Diabetes Mellitus, and Atheroscleropathy: The Pleiotropic Effects of Folate Supplementation. Nutrition Journal, 2004, 3:4
- Jude, E.B. et al. (2002). The Role of Matrix Metalloproteinases in Wound Healing. Journal of American Podiatric Medical Association. 2002;92(1):12-18

References:

- 13. Cullen, B., et al. An in vitro evaluation of advanced wound dressings and the chronic wound environment. Wound Rep Reg 2002;10: 16-25.
- 14. Diabetes Metab Res Rev 2016; 32(Suppl. 1): 154–168. DOI: 10.1002/dmrr
- 15. Diabetes Metab Res Rev 2016; 32(Suppl. 1): 75–83. DOI: 10.1002/dmrr.2700
- 16. International Diabetes Federation. (2020). https://www.idf.org