Implantable Medical Devices

D. Lindsie Cone, MD, UHM, FUHM

In the Hyperbaric Environment

Primary Training Course

Implantable Devices

In the Hyperbaric Oxygen Environment Introduction

- Technological advances have allowed the development of a myriad of implantable medical devices in recent years.
 - Micro circuitry
 - Advanced battery technology
 - Biocompatible materials

1

Implantable Devices

In the Hyperbaric Oxygen Environment

Introduction

- Aberrant or inconsistent /unpredictable function

• Exposure to increased ambient pressure or

- Communication / programming disruption

hyperoxia may result in:

- Overt device failure

- Patient / staff safety issues

3

Implantable Devices In the Hyperbaric Oxygen Environment Introduction

• A number of problems may be associated with the use of Implantable Medical Devices (IMDs) in the setting of hyperbaric oxygen therapy as a result of exposure to increased ambient pressure, oxygen tensions, or both.

4

2

Implantable Devices

In the Hyperbaric Oxygen Environment

Outline

- Categorize devices into groups with similar functions, issues, and/or concerns
- Identify potential issues within specific device categories with representative examples provided.
- Discuss potential risk management strategies within the hyperbaric environment.

6

Active Medical Device (AIMDs)

Definition

• Any medical device that relies on a source of electrical energy or any source of power other than that directly generated by the body or gravity.

Implantable Devices

Miscellaneous Implantable Devices

Electrical Pulse Generators

- Generally low energy devices
- Self contained
- Highly programmable
- Used for stimulation of various physiological functions

7

Implantable Devices

Internet of Things (IoT)

- Microcomputers
 AIMDs are essentially embedded PCs.
- Thirds are essentially embedded I es.
- Consist of both hardware as well as operating system software
- Devices are often interconnected and wirelessly configurable.
- Full radio-frequency based IMDs approved by FDA in 2009
 High characteristic approach in the second second

9

Implantable Devices

Active Medical Devices

Clinical Considerations

- Nearly one fourth (23%) of the recalls resulted from computer related failures.
- The vast majority (94%) of the events represented a medium to high risk of serious injury or death.

Communications of the ACM, October 2013;vol 56:1

Implantable Devices

Active Medical Devices

Clinical Considerations

- Over 5000 recalls reported to the FDA's Manufacturer and user Facility Device Experience (MAUDE) database (2006-2011).
- Approximately 1.2 million adverse events related to medical devices reported.

of the ACM, October 2013;vol 56:10

10

8

Implantable Devices

Internet of Things (IoT)

Clinical Considerations

- Medical hacking is a relatively new topic.
- Most medical devices have little or no intrinsic security.
- Balance must be struck between security and patient safety.

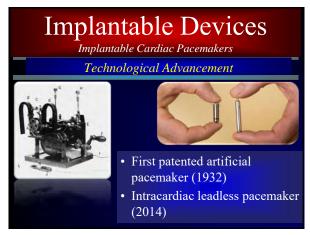
H@cking Implantable Medical Devices, INFOSEC INSTITUTE, April 201-

Internet of Things (IoT)

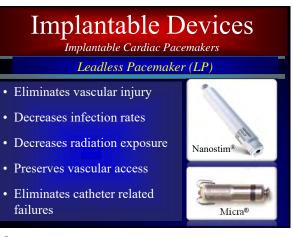
Clinical Considerations

- Steel multiplace chambers may function as a Faraday cage.
- May result in loss of wireless communication with device and impact:
 - Command and control
 - "Phone home" capabilities

13


Implantable Devices

Implantable Cardiac Pacemakers


Increasing Incidence of Implantation

- More than 200,000 pacemakers are implanted annually in the U.S.
- Atrioventricular block and sinus node disease remain the most common indications for implantation
- Other indications have emerged
 - Neurocardiogenic syncope
 - Cardiac resynchronization therapy

14

15

16

Implantable Devices

Implantable Cardiac Pacemakers

Leadless Pacemaker (LP)

- Decreases risk of pneumothorax
- Extraction and replacement of device facilitated.
- Medtronic Micra[®] approved for pressures up to 4 ATA.
- St. Jude Nanostim[®] has not been formally pressure tested.

Implantable Devices

Implantable Cardiac Pacemakers

Approach to the Patient

- Observe pressure limits for pacemakers.
- Consult manufacturer for pressure restrictions.
- Turn rate-sensing feature to "Off" if applicable pressure sensitive.
- Consider the use of continuous ECG monitoring.

Implantable Cardiac Cardioverters - Defibrillators High Energy Device


Potential increased risk of fire within the monoplace environment

- Controversies have arisen due to pulse generator / ICD
- Multiple problems have been reported with respect to lead defects.

19

Implantable Devices Electrical Injury The American Heart Association nor the International Liaison Committee on Resuscitation offer no formal statement. Patient contact during ICD discharge does not pose a safety risk: British Heart Foundation European Resuscitation Council – Arrhythmia Alliance - Equipment Manufacturers - UK Joint Royal Colleges Ambulance Liaison Various Journal Articles Committee

21

Implantable Devices

Implantable Cardiac Cardioverters - Defibrillators Increasing Incidence of Implantation

- ICD implantation has increased annually some 20 fold over the past 15 years.
- Indicated in patients at risk for life threatening ventricular dysrhythmias
 - Ischemic heart disease
 - Cardiomyopathy

20

Implantable Devices Implantable Cardiac Defibrillators Electrical Injury Diez (2008) – Insulation defects led to multiple arc marks within the ICD pocket and there was a short circuit between denuded leads and the electrically active pulse generator. The high current flow generated sufficient heat to damage several circuits of the generator.

22

Implantable Devices

Implantable Cardiac Defibrillators

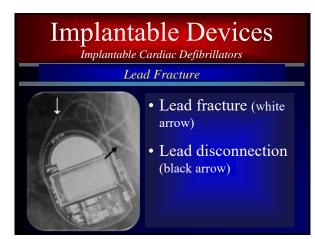
Electrical Potential

 Peters (1998) – "...a considerable potential difference can be detected on the body surface of patients during discharges of transvenous active can ICD systems."

Implantable Cardiac Defibrillators

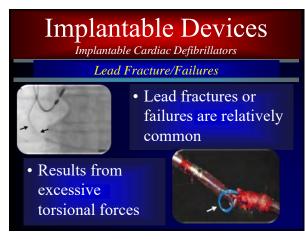
Electrical Potential

- The maximum device output could be as high as 66.75mA which would yield a theoretical power of 6.07 Watts.
- NFPA 99 (2012) guidelines call for equipment within the hyperbaric environment to produce less than 4 Watts of power – a 150% increase.

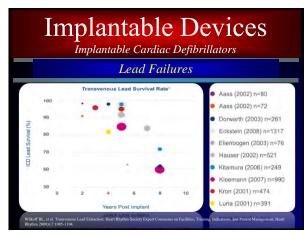

Implantable Devices

Implantable Cardiac Defibrillators Lead Failures

- Failures most common in pace-sense leads (81%)
- May generate spurious signals leading to multiple inappropriate shocks



26



25

28

Implantable Devices

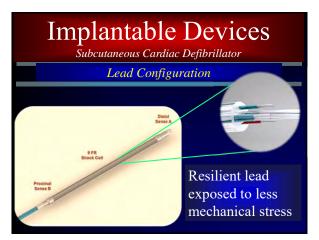
Implantable Cardiac Defibrillators

Sprint Fidelis[®] Lead

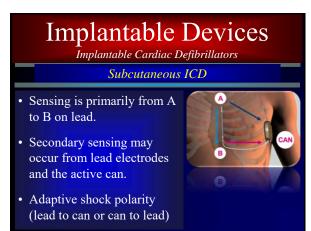
- ~ 150,000 patients in the US have these leads.
- Pace-sense lead most commonly affected leading to inappropriate shocks.
- In general risk increases over time 40% after 8 years.

Implantable Cardiac Defibrillators Lead Fracture/Failures

- Devices should be interrogated prior to treatment
- High lead impedance is indicative of fracture

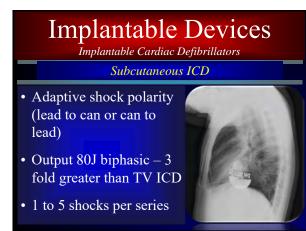

Implantable Devices

Implantable Cardiac Defibrillators


Subcutaneous ICD (S-ICD)

- Eliminates vascular injury
- Less potential for infection
- Preserves venous access
- Decreased fluoroscopy time
- Less catheter related issues

31



33

34

32

Implantable Devices

Implantable Cardiac Defibrillators

Magnet Deactivation

- Deactivation of ICD does not affect pacing function.
- ICD remains deactivated as long as the magnet is in place.
- An audible tone may be heard to signal deactivation – may be continuous.

Implantable Cardiac Defibrillators Magnet Deactivation Emblem[®] S-ICD

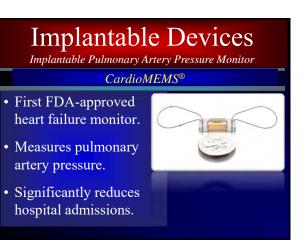
- Magnet location depends on model
- Magnet should be placed over the device header or lower edge.

Implantable Devices

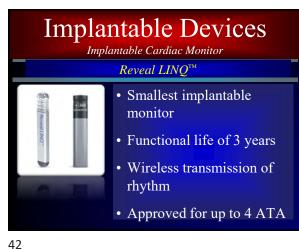
Implantable Cardiac Defibrillators

Approach to the Patient

- Observe recommended pressure limits.
- Interrogate the device to assure proper functioning and lead integrity.
- Assure proper patient and chamber grounding where applicable.


38

37

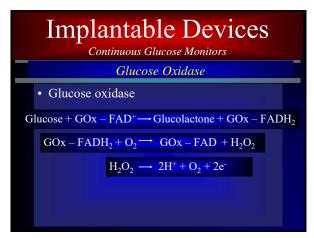

Implantable Devices

Approach to the Patient

- Consider magnet deactivation for patients with ICDs in the monoplace environment
- Utilize continuous electrocardiographic monitoring.
- Resuscitative equipment should be readily available.
- 39

Biosensors Continuous Glucose Monitors

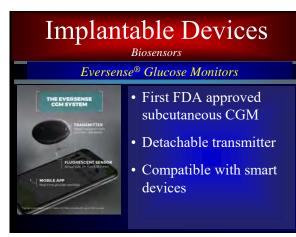
- Billion-dollar industry
- Multiple devices approved
- Accuracy and compatibility within the hyperbaric hyperoxic environment
- Safety considerations
- Closed loop systems available


Implantable Devices

Biosensors

Continuous Glucose Monitors

- Electro-chemical assays
 - Glucose oxidase
 - Glucose dehydrogenase
- Photometric
 - Fluorescence


44

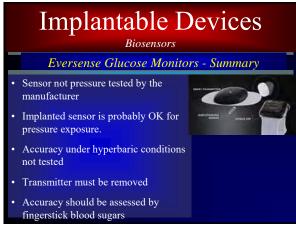


45

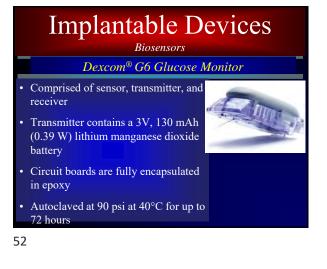
43

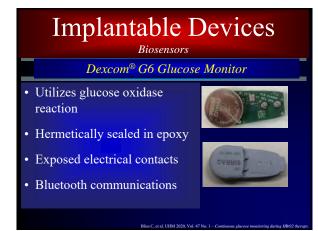
Implantable Devices Biosensors Eversense Glucose Monitors - Transmitter		
	 Transmitter utilizes a silicone adhesive Removal of transmitter doesn't affect the sensor Rechargeable battery last 36 hours/charge IP67 water resistant (1 meter for up to 30 minutes) 	
10		

49



• Based on the characteristics of the sensor, at present, there is no known mechanism to cause damage to the sensor such as to result in a safety concern.


Implantable Devices


• We do not have test data, which characterizes the performance after the hyperbaric chamber treatment. Any drop in performance can however be monitored with a fingerstick calibration over a few days after the hyperbaric treatment."

50

51

Biosensors

Dexcom[®] G6 Glucose Monitor - Testing

- Multiplace chamber
- $FiO_2 \le 23.5\%$
- Six transmitters attached to EGVGs
- Underwent 11 serial two-hour pressurizations to 2.4 ATA.

Biosensors

Dexcom[®] G6 Glucose Monitor - Testing

- Simulated glucose values were recorded during hyperbaric exposures.
- EGVGs were set to report values within:
 - a hypoglycemic range (<70 mg/dL)</p>
 - a euglycemic range (80-140 mg/dL)
 - a hyperglycemic range (>180 mg/dL)

55

Implantable Devices

Biosensors Dexcom[®] G6 Glucose Monitor - Results

- No issues with Bluetooth connectivity to receiver through the chamber hull or port windows.
- Recorded glucose values remained unchanged for the series of 11 two hour exposures.

C. et al. UHM 2020, Vol. 47 No. 1

• Post HBO evaluation with no noted device issues

57

Implantable Devices

Biosensors

Dexcom[®] G6 Glucose Monitor - Testing

- Receivers (smartphone) were kept outside the chamber.
- Receivers were tested at distance of ~ 20 ft.

56

Implantable Devices

Biosensors

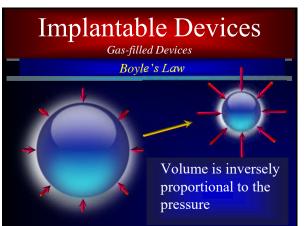
Dexcom[®] G6 Glucose Monitor - Results

- "The CGM transmitter meets section 14.2.9.3.17.5 of the 2018 NFPA 99 requirements for battery-operated devices allowed for use in a hyperbaric environment."
- "This analysis revealed no significant safety concerns with subjecting Dexcom G6 CGM transmitters to hyperbaric environments."

58

Implantable Devices

Non-electrical Devices


Mechanical Considerations

- Non-electrically powered devices subjected to mechanical forces leading to stress/strain.
- Loss of function, decreased longevity, or overt structural failure may result.

Air/Gas-filled Devices

Mechanical Considerations

- Gas-filled devices will typically obey Boyle's Law.
- Volume changes of the device may lead to untoward patient consequences.
- Device failure may occur if structural design is inadequate.

62

61

63

Implantable Devices

... Gas-filled Devices

HBO and Exotic Gas Blends

- Will result in loss of volume and possible collapse under pressure Boyle's Law.
- Migration of the balloons distally in the GI tract
- Possible intestinal obstruction or perforation of a hollow viscus upon decompression

64

Implantable Devices

Gas-filled Weight Loss Devices

Obalon[®]

• "Do not place balloons if the patient expects to permanently reside at an elevation > 4000ft or < 2500ft from balloon placement elevation."

• "Patients should not undertake scuba diving or travel in unpressurized airplane cabin."

Implantable Devices

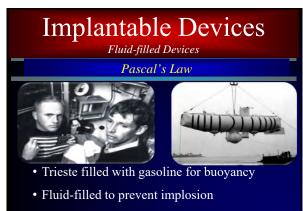
Capsule Endoscopy

- Self-contained device first approved in the US in 2001.
- Contains a camera, LED light source, battery, RF transmitter, and antenna

Capsule Endoscopy

• PillCam acceptable pressure operating range: 10.2 - 15.4 psia (0.69 – 1.05 ATA)

• Other device likely to have similar pressure constraints.

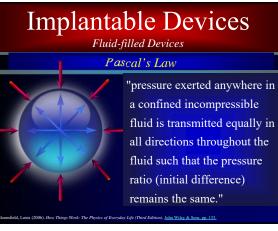

67

Implantable Devices

Mechanical Considerations

- Fluid–filled devices will typically obey Pascal's Law
- Device volume will not change with increases in ambient pressure
- Transmural wall stress is not expected to change with constant radius of curvature.

69



• Withstood ~1086 ATA at ~ 36,000 fsw

Implantable Devices Capsule Endoscopy Approach to the Patient • Non-emergent HBO should be held until device passes. • ASGE guidelines: Implantable Devices

 If not passed > 2 weeks, device should be endoscopically or surgically removed

68

70

Implantable Devices

Fluid-filled Devices

Fluid-filled Reservoir

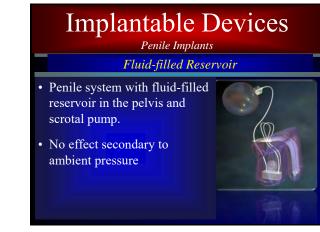
- Transmural pressure (P_{inside} P_{outside}) unchanged with changes in ambient pressure according to Pascal's Principle.
- Volume changes and mechanical stress on the device are not expected.

Implantable Devices Fluid-filled Weight Loss Devices

Orbera[®] and Penile Implants

Devices inflated with sterile water to occupy space within the stomach.

- Non-compressible medium removes risk of volume changes.
- Transmural pressures are not expected to change.


73

Implantable Devices

Devices with an Internal Void or Reservoir

- Electronic and Mechanical Considerations
- Electronic components may have similar problems as other active implantable devices.
- A void within the device may lead to mechanical stresses leading to deformation or failure.

75

74

Implantable Devices Medication Delivery Systems Implantable Pumps

- Intrathecal pumps - Anti-spasmodic drugs - Opioid analgesics
 - Alpha adrenergic agents
- Intra-arterial pumps
 - Chemotherapeutic drugs for primary liver cancer Colon cancer with liver
 - metastases.

76

Intrathecal Pumps • Refillable drug reservoir

Implantable Devices

Medication Delivery Systems

- Battery-powered pump
- Programmable logic for sophisticated dosing regimens

Implantable Devices

Medication Delivery Systems Hyperbaric Therapy

- •Pressures greater than 2.0 ATA could result in pump damage.
- •Reservoir should be filled to capacity prior to exposure to hyperbaric conditions.

Implantable Devices Medication Delivery Systems Refilling Errors		
	• Utilize the appropriate template for accessing the <u>reservoir refill port</u> vs. the <u>catheter access port</u> .	
Meditonic Synchrolleg*	 Strictly adhere to manufacturer's refilling procedures 	
	Medication Safety Alert © 2005 Institute for Safe Medication Practic	
79		

Medication Pumps Approach to the Patient

- Before exposure to hyperbaric pressures, patients should discuss the effects of high pressure with their physician – informed consent.
- As pressure increases, pump flow decreases.

80

Implantable Devices

Medication Pumps Approach to the Patient

- Continued pressure increases will eventually result in a loss of or change in therapy.
- May lead to a return of underlying symptoms, drug withdrawal symptoms, or a clinically significant or fatal drug <u>underdose</u>.

81

82

Implantable Devices Programmable Ventriculo-Peritoneal Shunt Hyperbaric Therapy Programming via external controller. • Not formally pressure tested.

• Manufacturer reports no malfunctions in known exposures to HBO.

Fluid-filled Device

Breast Implants

• Breast implants with fluidfilled reservoir (saline or silicone) respond according to Pascal's Principle.

• Transmural pressure (P_{inside} – P_{outside}) unchanged with changes in ambient pressure. **Implantable Devices**

...breast implants

Exposure to Pressure

- Grippaudo (2002) subjected breast implants to 40 simulated recreational dives.
- Goal was to determine if implants exposed to elevated pressure results in structural or conformational changes.

Implantable Devices

...breast implants

Exposure to Pressure

• No shell ruptures were noted.

the cohesive gel implants.

• No changes in volume were noted.

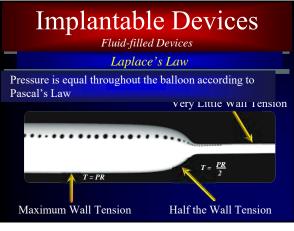
• Conformational changes were noted in

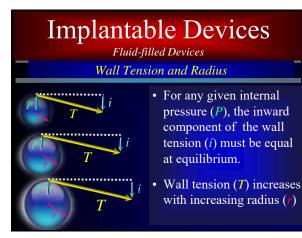
elants: laboratory simulation of recreational diving conditions. British J. Plastic Surgery. 2002;55:120-123

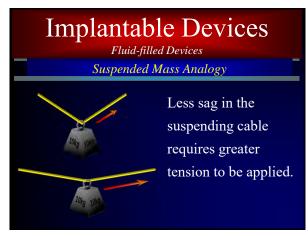
86

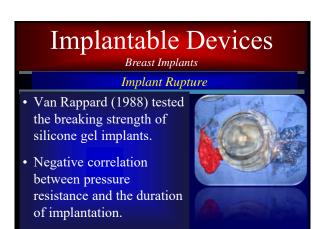
85

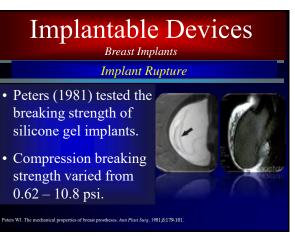
Implantable Devices


Exposure to Pressure


- Dive profiles were to 39m twice daily with an 8 hour surface interval between dives for a total of 20 days.
- Staged decompression was carried out in accordance with US Navy tables.
- Implants were inspected for integrity and CT scans were performed after all dive were completed.


87


88 Implantable Devices Fluid-filled Devices Unequal Application of Pressure



Implantable Devices Silicone Devices Gas Permeability Across a Silicone Membrane				
Gas	Permeability x 10 ⁹ cm³⋅cm/(sec⋅cm²⋅cmHg)	Diffusivity x 10 ⁶ cm²/sec	Solubility cm³(STP)/cm³⋅atm	
H ₂	65	43	0.12	
He	35	60	0.045	
CO ₂	323	11	2.2	
N ₂	28	15	0.15	
O ₂	62	16	0.31	
CH_4	95	13	0.57	
ang, H. "Global Advances in Materials and Process Engineering", proceedings, Coatings and Scalants Section, November 6-9, 2000, Dallas, TX.				

97

Implantable Devices

Breast Implants
Patient Considerations continued

- Ruptured detection is difficult by physical exam.
- Consider pretreatment MRI.
- Obtain an adequate informed consent

99

Implantable Devices

Breast Implants

Patient Considerations

- Capsular contractures may convey an asymmetric pressure on implants.
- Reconstruction patients are at higher risk for rupture.
- Older implants may have already ruptured.
- Silicone's high oxygen permeability may have some chemical influence on the implant integrity.

98

Implantable Devices

...In Summary

- A growing number of sophisticated IMDs are becoming available.
- Functional changes related to hyperbaric pressures and/or oxygen should be understood.
- Wireless communication with devices must be considered.
- Device pressure limits should be observed.

100

Implantable Devices

...In Summary

- Proper filling of implantable pumps prior to exposure to pressure.
- Consider deactivation of ICDs in the monoplace setting.
- Proper monitoring should be instituted to determine a device malfunction where feasible.
- Appropriate use of HBO requires a clinical determination of the risk of treatment vs. the benefit.

